Avalanche photodiodes and quenching circuits for single-photon detection.
نویسندگان
چکیده
Avalanche photodiodes, which operate above the breakdown voltage in Geiger mode connected with avalanche-quenching circuits, can be used to detect single photons and are therefore called singlephoton avalanche diodes SPAD's. Circuit configurations suitable for this operation mode are critically analyzed and their relative merits in photon counting and timing applications are assessed. Simple passive-quenching circuits (PQC's), which are useful for SPAD device testing and selection, have fairly limited application. Suitably designed active-quenching circuits (AQC's) make it possible to exploit the best performance of SPAD's. Thick silicon SPAD's that operate at high voltages (250-450 V) have photon detection efficiency higher than 50% from 540- to 850-nm wavelength and still ~3% at 1064 nm. Thin silicon SPAD's that operate at low voltages (10-50 V) have 45% efficiency at 500 nm, declining to 10% at 830 nm and to as little as 0.1% at 1064 nm. The time resolution achieved in photon timing is 20 ps FWHM with thin SPAD's; it ranges from 350 to 150 ps FWHM with thick SPAD's. The achieved minimum counting dead time and maximum counting rate are 40 ns and 10 Mcps with thick silicon SPAD's, 10 ns and 40 Mcps with thin SPAD's. Germanium and III-V compound semiconductor SPAD's extend the range of photon-counting techniques in the near-infrared region to at least 1600-nm wavelength.
منابع مشابه
Semiconductor optical single-photon detectors
Avalanche Photodiodes (APDs) connected with quenching circuits can be used for single photon detection. This semiconductor photon detector has a better performance than photomultiplier. The principles and applications of APDs are presented. Features, performance of different commercial devices are introduced and compared. Recent research progress based on the improvement of quenching circuits a...
متن کاملFully-Integrated Active-Quenching Circuit for Single-Photon Detection
A monolithic active-quenching and active-reset circuit is presented, designed for avalanche photodiodes that detect single-photons by operating above the breakdown voltage (VB) in a digital mode, known as SPAD's. To the best of our knowledge, this is the first fully-integrated circuit of this kind ever reported. It operates with any existing SPAD, also with very high VB, since the quenching pul...
متن کاملThe breakdown flash of Silicon Avalance Photodiodes – backdoor for eavesdropper attacks?
Silicon avalanche photodiodes are the most sensitive photodetectors in the visible to near infrared region. However, when they are used for single photon detection in a Geiger mode, they are known to emit light on the controlled breakdown used to detect a photoelectron. This fluorescence light might have serious impacts on experimental applications like quantum cryptography or single-particle s...
متن کاملAdvances in InGaAs/InP single-photon detector systems for quantum communication
Single-photon detectors (SPDs) are the most sensitive instruments for light detection. In the near-infrared range, SPDs based on III–V compound semiconductor avalanche photodiodes have been extensively used during the past two decades for diverse applications due to their advantages in practicality including small size, low cost and easy operation. In the past decade, the rapid developments and...
متن کاملDynamic Quenching for Single Photon Avalanche Diode Arrays
We propose the use of dynamic circuits for quenching avalanche events in single photon avalanche diode (SPAD) arrays. Two area-efficient, circuit solutions are presented in 0.35μm CMOS technology. These circuits contain no passive elements and consume shoot-through current only at triggering instants. The resulting reduction in power consumption and supply noise is essential to formation of lar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 35 12 شماره
صفحات -
تاریخ انتشار 1996